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Abstract

Purpose – This paper aims to improve the mathematical justification of certain analog signal theory
concepts and offer a rigorous framework for it.

Design/methodology/approach – The framework relies on functional analysis, namely theory of
distributions and the concept of weak limit. Its notation is adjusted to resemble the notation usually
used in engineering signal theory. It can be used to prove in a rigorous manner already established
results in signal theory, but also to establish new ones.

Findings – Examples have shown the lack of rigour caused by using ordinary calculus in proving
fundamental signal theoretic results. On that basis, concepts of limit, Fourier transform and derivative
are revisited in the spirit of functional analysis. A new useful formula for weak limit computation is
proved.

Originality/value – Functional analysis is efficiently used in signal theory in a manner
approachable by engineers. An original and efficient formula for weak limit computation is
presented and proved.

Keywords Analog signal theory, Functional analysis, Schwartz distribution, Weak limit,
Fourier transforms

Paper type Research paper

1. Introduction
Signal theory is a branch of applied mathematics that uses various tools from
advanced calculus to explore properties of various physical quantities described in
abstract form that vary in time and/or space (signals). Another aim of signal theory is
deriving relationships between responses of various abstract models of real physical
processes (systems) to applied stimulus. If we assume that all quantities are known
in any instance of time and/or space, then we talk about analog signal theory.

To achieve proposed goals, analog signal theory sometimes must use very
advanced tools from functional analysis (especially from theory of distributions) and
Fourier analysis. Unfortunately, although signal theory is developed mainly for
applications in engineering, these advanced tools are often far beyond mathematical
knowledge of a typical engineer. Consequently, in many prevalent courses of analog
signal theory, such tools are presented in quite oversimplified form, which formally
makes them look like well-known tools from ordinary calculus. Using such approach,
the theory itself may be presented in a way that may be understandable even
to non-experts in mathematics (Papoulis, 1962, 1977). In addition, such approach
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often produces final results which are valid in practice, even if intermediate steps
which are performed in deriving these results are not rigorous (the validity of such
steps is often quite suspicious). The main shortcoming of such approach is the fact
that we have no clue under which circumstances derived results are valid, and what
happens if they are not valid. Maybe the worst consequence of non-rigorous approach
is the possibility that someone (a student or a potential researcher) might derive
completely incorrect conclusions if any of non-rigorous steps is performed without
very special precautions (which are not given in the simplified theory). Of course, the
same results may be derived in a rigorous manner using very advanced mathematics
(Vladimirov, 1979; Reed and Simon, 1980; Rudin, 1973), but we already said that
the rigorous derivation is incomprehensible for most users of signal theory.

In this paper, we will discuss the concept of limit, which is often misinterpreted
in analog signal theory. Namely, the classic concept of limit known from ordinary
calculus is often inadequate for usage in analog signal theory and, as we shall see,
sometimes may produce incorrect results. Another concept of limit, so-called weak
limit (or, even more precise, weak-star limit), which is more adequate for usage
in analog signal theory, is known in advanced mathematics for years. For example, this
concept may be found (in various forms) in publications by Hadamard, Fréchet,
Banach, Riesz and Sobol’ev. Today, it is one of the fundamental concepts in functional
analysis. Unfortunately, weak limit is usually defined using very abstract concepts,
which look completely strange to an average engineer (Reed and Simon, 1980; Rudin,
1973). In this paper, we will show how it is possible to introduce weak limits and work
with them using the terminology and notation that is not far from the terminology
and notation known from ordinary calculus, and which is usually used in analog signal
theory. Of course, such approach is significantly better than ignoring the concept
of weak limit completely (which is usual approach in teaching analog signal theory).

Unfortunately, no definition of weak limit known from functional analysis gives
any useful method for calculating weak limits. That is why the weak limit of a
weakly convergent process in functional analysis is usually anticipated. Afterwards,
various advanced tools are used to prove that the anticipated result is correct. Such
approach is completely inadequate for usage in signal theory. So, the main contribution
of this paper is a formula that allows to determine the weak limit in a lot of situations
which arise very often in the signal theory. The proof of the formula is also given in the
paper. The formula itself is quite useful and it is understandable enough to be included
in more advanced courses dedicated to analog signal theory. The usefulness of the
given formula is also demonstrated in the paper.

After this introduction, Section 2 of the paper deals with the concept of weak limit,
introducing it and comparing it with the ordinary limit. Section 3 introduces the new
method for weak limit calculation, appropriate for engineering purposes. Section 4 uses
the weak limit concept for adding rigor in familiar concepts like derivatives and
Fourier transform. After the conclusions, an Appendix is given with proofs of theorems
stated in the paper.

2. The concept of the weak limit
A careful reader who reads any book about analog signal theory may notice that the
classic concept of limit known from calculus cannot be applied to some formulae that
are used in the signal theory. Probably the most obvious example occurs in the theory
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of Fourier transform. There are many formulae related to Fourier transform (Papoulis,
1962, 1977) that cannot be explained using the classic concept of limit. For example,
many books give the following formula:

F{sgn t} ¼ 2i
2

v
ð1Þ

Deriving this formula indirectly is quite easy (Papoulis, 1977). However, if we try to
derive this formula directly from the usual definition of Fourier transform, we will find
a lot of troubles:

F{sgnt}¼

Z 1

21

sgn te2ivtdt¼2

Z 0

21

e2ivtdtþ

Z 1

0

e2ivtdt¼2

Z 1

0

eivtdtþ

Z 1

0

e2ivtdt

¼2

Z 1

0

ðeivt2e2ivtÞdt¼22i

Z 1

0

sinvtdt¼2i
cosvt

v

����
t¼1

t¼0

¼2i
t!1
lim

cosvt

v
2

1

v

� �
ð2Þ

This result reduces to equation (1) only if we can somehow justify the following limit:

t!1
lim

cosvt

v
¼ 0 ð3Þ

This is, of course, impossible using classic definition of limit known from the calculus
(note that equation (3) should be valid in some sense even for v ¼ 0).

The second example that suggests that equation (3) might be correct in some
generalized sense comes from studying behavior of real systems in the time domain.
Assume that we applied signal f(t) ¼ sin v t as an input of a real linear time-invariant
system. As we know from the signal theory, the response g(t) will be again a sine wave
(probably shifted) with amplitude A(v), where A(v) is the magnitude of a frequency
transfer function of the system. Of course, A(v) depends of v. However, almost all real
systems attenuate strongly very high frequencies, so A(v) ! 0 as v ! 1. So, the
response g(t) tends to zero as v ! 1. This means that real-world systems sense a
rapid sine wave as a zero input. As this is true for all real-world linear time-invariant
systems, we can conclude that the following relation must be valid in some sense,
although it is completely meaningless using classic definition of limit:

v!1
lim sinvt ¼ 0 ð4Þ

Obviously, equation (4) is closely related with equation (3).
Someone might object that the assumption f(t) ¼ sin v t is quite unrealistic,

because f(t) is an eternal wave. Nevertheless, it can be shown that the same conclusion
can be derived for causal sine wave, i.e. for f(t) ¼ sin v t u(t), where u(t) is Heaviside
step function. For example, if we apply f(t) as an input to first order system (say, RC
circuit where t ¼ RC), we can derive the following response:

gðtÞ ¼

Z t

0

sinvje2tðt2jÞdj ¼
1

v2 þ t2
½ve2tt þ tsinvt 2 v cosvt�uðtÞ ð5Þ

Obviously, this response also tends to zero as v tends to infinity.
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Another closely related example is given by Feynman et al. (1964).
In order to calculate the total radiation field produced by a sheet of oscillating
sources in a point at a large, finite distance from the sheet, integral in question was
reduced to: Z r¼1

r¼z

e2ivr=cdr ¼ 2
c

iv
e2i1 2 e2ðiv=cÞ z
h i

ð6Þ

(notation quoted without any editing). Feynman et al. (1964) writes:

Now e 2 i1 is a mysterious quantity. Its real part, for example, is cos (21), which,
mathematically speaking, is completely indefinite (although we would expect it to be
somewhere – or everywhere (?) – between þ1 and 21!). But in a physical situation, it can
mean something quite reasonable, and usually can just be taken to be zero.

Again, physical reality indicates that mathematical tools being used are not exactly
what is needed.

These examples show that the concept of limit should be generalized for proper
usage in the signal theory. Moreover, the following example shows that the concept of
limit for purposes of signal theory must be completely changed, not only generalized.
Namely, in previous examples, the classical limit does not exist at all. In the following
example, the classical (pointwise) limit of applied input sequence exists, but real-world
linear systems have completely different sensation about what this limit should be.
Assume that we applied the following sequence of signals as stimulus of some
real-world linear time-invariant system:

f nðtÞ ¼ 2nate2n 2t 2uðtÞ ð7Þ

Here, a is a positive real parameter. This sequence converges to zero when n
tends to infinity for all fixed values of t, so in classical (pointwise) sense, we obviously
have:

n!1
lim f nðtÞ ¼ 0 ð8Þ

Now, we will show that the most of real-world linear time-invariant systems do not
share the same opinion. Studying the general case might be quite difficult. So, let us
assume for the beginning that a sequence of stimuli f n(t) is applied to, say, pure
integrator. Then, we will get the following sequence of responses:

gnðtÞ ¼

Z t

0

f nðjÞdj ¼ na22ð12 e2n 2t 2ÞuðtÞ ð9Þ

The behavior of this sequence depends strongly of the value of a. For a , 2, gn(t)
really tends to zero as n ! 1, but for a $ 2, we have completely different behavior.
For a . 2, gn(t) diverges, and for a ¼ 2, gn(t) tends to the step function u(t). We can
derive the similar conclusion for many other linear time-invariant systems. For
example, if we replace the pure integrator with the first-order system (let us take t ¼ 1
due to simplicity), we will get:
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gnðtÞ¼

Z t

0

f nðjÞe
j2tdj¼na22 e2t2e2n 2t 2 þ

ffiffiffiffi
p

p

2n
e ð1=4n

2Þ2t erf
2n 2t21

2n
2erf

1

2n

� �� �
uðtÞ

ð10Þ

Again, we see that gn(t) converges to zero for a , 2, diverges for a . 2, and converges
to e 2 t u(t) for a ¼ 2. If we look carefully, we will see that u(t) is the impulse response of
the pure integrator, and that e2 t u(t) is the impulse response of the first-order system.
Obviously, this cannot be just a coincidence: fn(t) really in some sense, which we want
to explain, converges to impulse (but only for a ¼ 2).

Now, we will formalize the concept of so-called weak limit. In reality, any conclusion
about real behavior of a physical process may be derived only using measurements.
However, any measurement is, in fact, a response of some system – measurement
device, which, at least theoretically, should be linear and time-invariant. So, it seems
natural to define that the family of stimuli fl(t) tends to f(t) when l ! l0 if and only if
for each linear time-invariant system L[ · ] the sequence of responses gl(t) ¼ L[ fl(t)]
converges to response g(t) ¼ L[ f(t)] when l ! l0. This is exactly what is called
weak-limit: f l(t) ! f(t) weakly when l ! l0 if and only if L[ fl(t)] ! L[ f(t)] for each
linear time-invariant operator L taken from some class of such operators (Vladimirov,
1979; Reed and Simon, 1980; Rudin, 1973; Schwartz, 1965; Antosik et al., 1973). If we
express operator L using the convolution integral, we can give the alternative
definition: fl(t) ! f(t) weakly when l ! l0 if and only if for each function f(t) taken
from some class of functions the following relation is satisfied:

l!l0
lim

Z 1

21

f lðtÞfðtÞdt ¼

Z 1

21

f ðtÞfðtÞdt ð11Þ

The most natural question is which class of functions f(t) we should consider.
Functional analysis defines various types of weak limits, depending just on the class of
functions f(t) for which equation (11) must hold. Let us consider which class is the
most appropriate class for the applications in the signal theory. If we assume that the
measurement process is causal, and if we pick the result of measurement in a finite
time, it is easy to conclude that f(t) is always time-limited function (i.e. function with
compact support). In the theory of generalized functions (Vladimirov, 1979; Schwartz,
1965; Antosik et al., 1973), it is required that equation (11) must be satisfied for each
time-limited and infinitely smooth function f(t) (such functions are called test
functions, and its space is called D(R)). Restriction to the smooth functions f(t) makes
some generalizations much easier. Note that this restriction is not too restrictive even
for practical considerations, because in reality parasitic effects prevent instantaneous
changes in physical quantities during the measurement process, so f(t) is always
smooth in reality. Therefore, we will accept the requirement that equation (11) must
hold for each test function f(t).

In fact, it is easy to see that the weak limit cannot be determined completely
uniquely. Namely, if f(t) is a weak limit of fl(t) when l ! l0 and if s(t) is any function
which is equal to zero everywhere except on a zero measure set (so-called null function),
then f(t) þ s(t) is also a weak limit of fl(t) when l ! l0. Also, if f *(t) and f* *(t) are
two different weak limits of fl(t) when l ! l0, then f *(t) 2 f**(t) is necessarily a
null function (Reed and Simon, 1980; Rudin, 1973; Schwartz, 1965; Natanson, 1957).

Analog signal
theory

1013



www.manaraa.com

Therefore, the weak limit can be determined uniquely only up to a null function,
i.e. almost everywhere. To make the definition of the weak limit less indeterminate,
we will accept the convention that the “correct” weak limit is one that is continuous
at as many points as possible. Under such convention, the weak limit is determined
uniquely at each point of continuity. At the points of discontinuity, the weak limit may
be defined arbitrarily, for example, at the point t ¼ 0 when f(t) ¼ u(t).

Using given definition of weak limit and applying Riemann-Lebesgue lemma
known from Fourier analysis (Vladimirov, 1979; Reed and Simon, 1980; Natanson,
1957), it may be shown quite easily that:

w:
v!1
lim sinvt ¼ 0 ð12Þ

This is exactly what we concluded using naive reasoning. Here, the notation w.lim is
used to make distinction between ordinary and weak limit. This distinction is
necessary, because we saw that ordinary and weak limits do not always coincide.
Unfortunately, notation w.lim is rarely used in engineering literature, although nearly
all limits in analog signal theory are in fact weak limits. This may be misleading,
especially because some formulae that are true for classical limits are not true for weak
limits. For example, the following well-known formula is valid for classical limits
(assuming that both sides of this formula exist):

l!l0
lim f lðtÞglðtÞ ¼

l!l0
lim f lðtÞ ·

l!l0
lim glðtÞ ð13Þ

However, this formula often fails with weak limits. Here is a simple counterexample:

v!1
w:lim ðsinvt · sinvtÞ ¼

v!1
w:lim

12 cos 2vt

2
¼

1

2
2

1

2 v!1
w:lim cos 2vt ¼

1

2
ð14Þ

v!1
w:lim sinvt ·

v!1
w:lim sinvt ¼ 0·0 ¼ 0

More specifically, as the weak limit is a product of the linear functional analysis, we
can expect that it may behave pathologically in combination with non-linear operations
(like multiplication).

The following theorem gives a simple sufficient condition for equality of pointwise
and weak limit.

Theorem 1. Let fl(t) be a family of locally integrable real functions (i.e. real
functions such that their integral is finite on each finite interval). If there exists a locally
integrable function f(t) such that j fl(t)j # f(t) for all values of l from
some neighborhood of l ¼ l0 (finite or infinite, where neighborhood of an infinite
value þ1 or 2 1 is any set that contains interval (c, þ1) or (21, c) where c is
some constant) and if fl(t) converges pointwise everywhere except maybe on a zero
measure set, then:

l!l0
w:lim f lðtÞ ¼

l!l0
lim f lðtÞ ð15Þ
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This theorem is a direct consequence of Lebesgue convergence theorem known from
real analysis. Its proof may be found in Natanson (1957) and Royden (1988), where it is
given in slightly different but equivalent form.

Note that the conditions of Theorem 1 are not satisfied for the sequence fn(t) given
by equation (7), and we saw that for this sequence pointwise and weak limit does not
coincide. Let us apply equation (11) to find what is the weak limit of fn(t) for a ¼ 2:

n!1
lim

Z 1

21

f nðtÞfðtÞdt ¼ n!1
lim 2n 2

Z 1

0

te2n 2t 2fðtÞdt

¼
n!1
lim 2n 2

Z 1=
ffiffi
n

p

0

te2n 2t 2fðtÞdtþ
n!1
lim2n 2

Z 1

1=
ffiffi
n

p
te2n 2t 2fðtÞdt

ð16Þ

We can make the following estimation for the second integral:

2n 2

Z 1

1=
ffiffi
n

p
te2n 2t 2fðtÞdt

�����
����� # 2n 2

Z 1

1=
ffiffi
n

p
te2n 2t 2 jfðtÞjdt # 2n 2M

Z 1

1=
ffiffi
n

p
te2n 2t 2dt ¼ Me2n

ð17Þ

Here, M ¼ max jf(t)j. From this estimation, we conclude that the second integral tends
to zero as n ! 1. The first integral can be transformed using the Mean Value
Theorem, so we have (here, 0 , q , 1):

n!1
lim

Z 1

21

f nðtÞfðtÞdt ¼ n!1
lim 2n 2f

qffiffiffi
n

p

� �Z 1=
ffiffi
n

p

0

te2n 2t 2dt

¼
n!1
limf

qffiffiffi
n

p

� �
ð12 e2nÞ ¼ fð0Þ

ð18Þ

Therefore, if the weak limit of sequence fn(t) is equal to some function f(t), then f(t) must
satisfy: Z 1

21

f ðtÞfðtÞdt ¼ fð0Þ ð19Þ

Strictly speaking, it is not hard to prove that such function f(t) does not exist
(Vladimirov, 1979; Reed and Simon, 1980; Rudin, 1973). However, we can recognize that
equation (19) is just the basic property of the well-known generalized impulse function
d(t), expressed using the notation which is usually seen in engineering books (Papoulis,
1962, 1977). Therefore, if we allow that the weak limit may be a generalized function,
we can say that:

n!1
w:lim f nðtÞ ¼ dðtÞ ð20Þ

This proves what we already concluded intuitively before. If we want to be
mathematically rigorous, then equation (11) should be rewritten in a form of
generalized inner product (Vladimirov, 1979), i.e. as:

l!l0
lim f lðtÞ;fðtÞh i ¼ f ðtÞ;fðtÞh i ð21Þ
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Namely, the inner product is well defined even for generalized functions, which is not
always true for the integral. In this paper, we will use the convention that generalized
functions are just Schwartz distributions (although there are also other kinds of
generalized functions). We will recall that the Schwartz distribution f(t) is a purely
symbolic object (not a function of a real argument t, regardless of the notation) which
acts as a functional (operator) that assigns to each test function f(t) a numeric value
which is by definition taken as a value of the inner product k f(t),f(t)l (Vladimirov, 1979;
Reed and Simon, 1980; Rudin, 1973; Schwartz, 1965). For example, the generalized
impulse function d(t) is in fact the operator that assigns to each test function f(t) the
value f(0), which is by definition the value of the inner product kd(t), f(t)l. If we want to
be as rigorous as possible, it is additionally requested that f(t) as an operator must be
continuous in respect to appropriately constructed topology (Vladimirov, 1979; Reed
and Simon, 1980; Rudin, 1973), but this is not so important for this paper. Note that each
classical locally integrable function f(t) may be also interpreted in distributional sense as
a functional that assigns to each test function f(t) the value:

f ðtÞ;fðtÞh i ¼

Z 1

21

f ðtÞfðtÞdt ð22Þ

If f(t) as an operator may be extended to space of functions f(t) such that they together
with all their derivatives decay more rapidly than any polynomial when t tends to
infinity although their support is not necessarily compact, then we say that f(t) is a
tempered distribution. Sufficient condition for ordinary locally integrable function f(t) to
be tempered is that there exists a polynomial P(t) such that f(t)/P(t) is absolutely
integrable on R.

It is important to notice that it is not possible to deduce what is the weak limit of a
sequence of functions just by simple superficial observation. For example, look at the
following picture, which shows the sequence fn(t) given by equation (7) for three
different values of a (Figure 1).

As we already deduced, sequence fn(t) converges to zero (both ordinarily and
weakly) for a , 2, converges (weakly) to d(t) for a ¼ 2, and weakly diverges for a . 2.
Therefore, from the system aspect of view, the sequence in the left picture is a zero
sequence, the sequence in the picture in the middle is an impulse sequence, and the
sequence in the right picture is a divergent sequence. Obviously, this cannot be
deduced just by observation of these pictures.

3. The proposed method for calculation of weak limits
The weak limit is a fairly well-known concept in advanced mathematics (Vladimirov,
1979; Reed and Simon, 1980; Rudin, 1973; Schwartz, 1965; Antosik, 1973). Unfortunately,
this important concept may be very difficult to calculate by usual means. From the
reasoning given in the previous section, we can easily conclude that finding weak limit

Figure 1.
Sequence (7) for different
values of the parameter a

α = 1.5 α = 2 α = 2.5

t

f(t) f(t) f(t)

t t
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may be very complicated task. For example, we saw that finding weak limit of sequence
fn(t) given by equation (7) required some tricky manipulations. Note that this example is
still a fairly simple case: finding the weak limit is usually much harder, and often
requires usage of very advanced tools from functional analysis. What is even worse, the
weak limit in question should usually be somehow anticipated intuitively, and
everything we can do is to prove (or disprove) that the anticipated result is a correct one.
The main problem is the fact that the definition of weak limit is not constructive in
nature. It does not give any clue about how the weak limit may be calculated.
Fortunately, through some physical reasoning, the authors of this paper discovered
(and proved) a constructive rule which may be used for calculating weak limit in many
cases which occur in the signal theory. The rule is given through the following theorem.

Theorem 2. Let fl(t) be a family of locally integrable functions parameterized by
real parameter l. Then, the weak limit of fl(t) when l ! l0, if exists, may be expressed
using the formula:

l!l0
w:lim f lðtÞ ¼

Dt!0þ
w:lim

1

2Dt l!l0
w:lim

Z tþDt

t2Dt

f lðjÞdj

� �
ð23Þ

The weak limit may be either ordinary or generalized function, and the existence of
the left side of this formula implies the existence of the right side. Additionally, under
the assumption that fl(t) is tempered, the existence of the right side also implies the
existence of the left side. The formula is valid even when fl(t) is family of generalized
functions, if the definite integral in this formula is interpreted as:Z tþDt

t2Dt

f lðjÞdj ¼ f lðtÞ*½uðt þ DtÞ2 uðt 2 DtÞ� ð24Þ

Here, the asterisk denotes the operation of convolution. Note that both sides of
equation (24) coincide whenever fl(t) is an ordinary function, but the right side of
equation (24) is well defined even when fl(t) is a generalized function because u(t þ Dt)
2 u(t 2 Dt) has compact support (Vladimirov, 1979; Rudin, 1973), which is generally not
true for the left side. Indeed, the convolution f(t)*g(t) of a generalized function f(t) with a
function g(t) with compact support is well defined as a functional which assigns to each
test functionf(t) the value k f(t), g(2 t)*f(t)l, i.e. k f(t)*g(t),f(t)l ¼ k f(t), g(2 t)*f(t)lwhere
the convolution g(2t)*f(t) of two ordinary functions has the usual meaning. Such
definition is sensible, because it is easy to show that under the stated condition the
convolution g(2t)*f(t) is a valid test function too, so itmay be given as an argument to f(t).

The proof of the Theorem 2 is given in the Appendix at the end of the paper.
The proof of the fact that the existence of the right side of equation (23) implies the
existence of the left side uses the Fourier transform. That is why the assumption about
temperedness of fl(t) is used. Otherwise, the Fourier transform cannot be applied, at
least not in the space of Schwartz distributions. This assumption very probably may
be omitted completely, because we did not find any counterexample where the right
side of equation (23) exists and the left side of it does not exist. However, to prove such
generalization, the proof must be based on tools that do not require the usage of Fourier
transform. This is the topic of our current research.

At first glance, equation (23) does not bring anything useful, because it replaces one
weak limit on the left side with two weak limits on the right side. However, weak limits
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on the right side are usually much easier to calculate, as we will see through some
examples. Let us first derive the relation (4) using equation (23):

v!1
w:lim sinvt ¼

Dt!0þ
w:lim

1

2Dt v!1
w:lim

Z tþDt

t2Dt

sinvj dj

� �
¼

Dt!0þ
w:lim

1

2Dt v!1
w:lim

2

v
sinvt sinvDt

� �

¼
Dt!0þ
w:lim

1

2Dtv!1
lim

2

v
sinvt sinvDt

� �
¼

Dt!0þ
w:lim 0¼

Dt!0þ
lim0¼ 0

ð25Þ

In this example, both weak limits on the right side reduce to ordinary pointwise limits,
because the conditions of Theorem 1 are satisfied (the functions under consideration
are locally integrable and bounded).

As a second example, let us find the weak limit of sequence fn(t) given by equation (7)
for a ¼ 2. If we apply equation (23), we obtain:

n!1
w:lim2n 2te2n 2t 2uðtÞ ¼

Dt!0þ
w:lim

1

2Dt n!1
w:lim

Z tþDt

t2Dt

2n 2je2n 2j2uðjÞdj

� �

¼
Dt!0þ
w:lim

1

2Dt n!1
w:lim

Z maxðtþDt;0Þ

maxðt2Dt;0Þ

2n 2je2n 2j2dj

� �

¼
Dt!0þ
w:lim

1

2Dt n!1
w:lim

e2n 2ðt2DtÞ2 2 e2n 2ðtþDtÞ2 ; t$Dt

12 e2n 2ðtþDtÞ2 ; jtj,Dt

0; t#2Dt

8>>><
>>>:

9>>>=
>>>;

¼
Dt!0þ
w:lim

1

2Dtn!1
lim

e2n 2ðt2DtÞ2 2 e2n 2ðtþDtÞ2 ; t$Dt

12 e2n 2ðtþDtÞ2 ; jtj,Dt

0; t#2Dt

8>>><
>>>:

9>>>=
>>>;

¼
Dt!0þ
w:lim

uðtþDtÞ2 uðt2DtÞ

2Dt
¼ dðtÞ

ð26Þ

Here, the inner weak limit again reduces to pointwise limit (by Theorem 1), and the
resulting outer weak limit is well known (weak) limit which is sometimes used in
technical books even as the definition of impulse function d(t). In fact, this limit is a
generalized (weak) derivative of the step function u(t).

Now, we will analyze some more sophisticated examples. Almost whole theory of
the inverse Fourier transform is based on something that may be expressed as the
following weak limit:

1!0
w:lim

1

pt
sin

t

1
¼ dðtÞ ð27Þ

This relation (in a form of ordinary limit) is often used in engineering books without
any rigorous proof (Papoulis, 1962, 1977). In fact, it is not so easy to prove
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equation (27) rigorously. For example, the fact that all test functions have bounded
variation must be used in the proof (Vladimirov, 1979; Reed and Simon, 1980; Rudin,
1973). Let us derive equation (27) using equation (23):

1!0
w:lim

1

pt
sin

t

1
¼

Dt!0þ
w:lim

1

2Dt 1!0
w:lim

1

p

Z tþDt

t2Dt

1

j
sin

j

1
dj

� �

¼
Dt!0þ
w:lim

1

2Dt 1!0
w:lim

1

p
Si
t þ Dt

1
2 Si

t 2 Dt

1

� �� �

¼
Dt!0þ
w:lim

1

2Dt 1!0
lim

1

p
Si
t þ Dt

1
2 Si

t 2 Dt

1

� �� �

¼
Dt!0þ
w:lim

uðt þ DtÞ2 uðt 2 DtÞ

2Dt
¼ dðtÞ

ð28Þ

Here, we used the boundedness of sine integral function Si t to reduce the inner weak
limit to the ordinary limit. Also, the fact that Si t ! ^ p/2 for t ! ^ 1 is used. Note
that the resulting inner weak limit is the same as in previous example. From the proof
of Theorem 2, we will see that this is not just a coincidence. Namely, the inner limit in
equation (23) does not depend on particular family fl(t) which converges weakly to
some function f(t), but only on the limit f(t). This means that for each family fl(t) which
converges to the same weak limit f(t), the inner weak limit in equation (23) will be the
same (and f(t) is just the weak derivative of this limit). That is why equation (23) is so
useful: it reduces all weak limits that produce the same result to one unique weak limit
(usually to a well-known one). Such weak limits may easily be tabulated (all of them
are, in fact, weak derivatives).

Next example is even more sophisticated than previous one. Let us consider the
following weak limit, which is very important in the linear frequency modulation
theory (Papoulis, 1977):

1!0
w:lim

1

1
ffiffiffiffiffi
ip

p e iðt
2=12Þ ¼ dðtÞ ð29Þ

If we take real parts of both sides of equation (29), it may be expressed as:

1!0
w:lim

1

1
ffiffiffiffi
p

p sin
t 2

12
þ

p

4

� �
¼ dðtÞ ð30Þ

This relation is quite far from obvious, even if we draw graphs of function under the
weak limit in equation (30) for various decreasing values of 1. The following picture
shows how the graph of this function looks like for one particular value of 1 (Figure 2).

Figure 2.
Function under limit in

equation (30) for a
particular choice of 1

t

f(t)
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As 1 decreases, the oscillations become more rapid, the amplitude of oscillations
increases and the central part becomes narrower. From this, it is not easy to
conclude anything useful about the limit behavior. Papoulis (1977) just gives a very
vague explanation and says that limit (29) is “a consequence of the oscillatory nature of
the function in consideration”. But, this result is not easy to anticipate, and even if
someone deduces that the limit may be d(t), it is not so easy to prove this conclusion.
Let us check what equation (23) says about this limit:

1!0
w:lim

1

1
ffiffiffiffi
p

p sin
t 2

12
þ
p

4

� �
¼

Dt!0þ
w:lim

1

2Dt 1!0
w:lim

1

1
ffiffiffiffi
p

p

Z tþDt

t2Dt

sin
j2

12
þ
p

4

� �
dj

� �

¼
Dt!0þ
w:lim

1

2Dt 1!0
w:lim

1

2
sgn1 S

ðtþDtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !
2S

ðt2DtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !"(

þC
ðtþDtÞ

ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !
2C

ðt2DtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !#)

¼
Dt!0þ
w:lim

1

2Dt 1!0
lim

1

2
sgn1 S

ðtþDtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !
2S

ðt2DtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !"(

þC
ðtþDtÞ

ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !
2C

ðt2DtÞ
ffiffiffi
2

p

j1j
ffiffiffiffi
p

p

 !#)

¼
Dt!0þ
w:lim¼

uðtþDtÞ2uðt2DtÞ

2Dt
¼ dðtÞ

ð31Þ

Here, S(t) and C(t) are Fresnel sine and cosine integrals, respectively. As we can see, the
result is derived quite easily. Namely, first the boundedness of these functions is used to
reduce the inner weak limit to a pointwise limit. Afterwards, the fact that S(t) ! ^ 1/2
andC(t) ! ^ 1/2when t ! ^ 1 is used to calculate the actual pointwise limit. Finally,
as expected, the result is again the weak derivative of the step function.

Sometimes, the inner limit in equation (23) does not reduce to the pointwise limit. In
such cases, equation (23) may be applied iteratively. For example, let us find what the
weak limit of 1t/(12 þ t 2)2 is when 1 ! 0:

1!0
w:lim

1t

ð12 þ t 2Þ2
¼

Dt!0þ
w:lim

1

2Dt 1!0
w:lim

Z tþDt

t2Dt

1j

ð12 þ j2Þ2
dj

� �

¼
Dt!0þ
w:lim

1

2Dt 1!0
w:lim

1

2

1

ðt 2 DtÞ2 þ 12
2

1

ðt þ DtÞ2 þ 12

� �� � ð32Þ

Now, the inner weak limit does not reduce to the ordinary pointwise limit.
Nevertheless, we can apply equation (23) again to these weak limits. As the weak limit
is linear, it is enough to calculate the following limit:
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1!0
w:lim

1

ðtþaÞ2þ12
¼

Dt!0þ
w:lim

1

2Dt 1!0
w:lim

Z tþDt

t2Dt

1

ðjþaÞ2þ12
dj

� �

¼
Dt!0þ
w:lim

1

2Dt 1!0
w:lim arctan

tþDtþa

j1j
2arctan

t2Dtþa

j1j

� �� �

¼
Dt!0þ
w:lim

p½uðtþDtþaÞ2uðt2DtþaÞ�

2Dt

� �
¼pdðtþaÞ

ð33Þ

Now, the inner weak limit reduces to the pointwise limit. For its calculation, we used
the fact that arc tan t ! ^ p/2 for t ! ^ 1. If we insert this result back in
equation (32), we can calculate the final result:

1!0
w:lim

1t

ð12 þ t 2Þ2
¼

Dt!0þ
w:lim

1

2Dt 1!0
w:lim

p

2
dðt 2 DtÞ2 dðt þ DtÞ½ �

� �
¼ 2

p

2
d0ðtÞ ð34Þ

Here, the result is expressed using the weak derivative of impulse function (the dipole
generalized function). It is possible to present much more examples of the application
of Theorem 2, where other interesting singular generalized functions (other than
impulse functions) are involved, like principal value of 1/t, etc. Such examples will not
be presented due to shortage of space.

4. Some applications of the weak limit in signal theory
The weak limit is a very useful concept in the analog signal theory. As already
mentioned, nearly all limits in the analog signal theory are weak limits. However, the
analog signal theory is full of other concepts that cannot be treated rigorously using
tools from the classical calculus. Although the functional analysis offers tools that
allow rigorous treatment of such concepts, the problem is that the functional analysis
has its own terminology, language and abstract operator-based notation that is very
indirect in nature, completely different from the usual engineering notation and even
quite confusing for any non-expert in functional analysis. In this section, we will see
that some of these concepts may be simply expressed rigorously through the concept of
the weak limit, using the notation that is very similar to the common notation known
from the ordinary calculus.

The first such concept is the concept of derivative. Analog signal theory very often
says that the impulse function d(t) is the derivative of the Heaviside step function u(t).
It is clear that such statement is meaningless under the usual interpretation of the
derivative known from ordinary calculus. That is why functional analysis introduces
the concept of so-called distributional or weak derivative. We say that the weak
derivative f 0(t) of an ordinary or generalized function f(t) is the functional that assigns
to each test function f(t) the value 2 k f(t), f 0(t)l. In other words, we have:

f 0ðtÞ;fðtÞ
	 


¼ 2 f ðtÞ;f 0ðtÞ
	 


ð35Þ

From this definition, it seems that the weak derivative is always a generalized function.
However, according to equation (22), if there exists an ordinary locally integrable
function f 0(t) such that:
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Z 1

21

f 0ðtÞfðtÞdt ¼ 2 f ðtÞ;f0ðtÞ
	 


ð36Þ

then f 0(t) is the weak derivative of f(t).
It is possible to prove that the weak derivative f 0(t) coincides with the ordinary

derivative whenever the latter one exists (Vladimirov, 1979). It is also easy to see that
d(t) is actually the weak derivative of u(t). Indeed, using the partial integration it is
straightforward to prove that 2 uðtÞ;f0ðtÞh i is equal to f(0), which is equal to
kd(t),f(t)l. However, definitions (35) and (36) are quite indirect. Although they allow to
determine how f 0(t) acts to any test function f(t), these definitions do not offer a way
to express f 0(t) using known ordinary or generalized functions for a given f (t).
Moreover, these definitions are quite different in nature from the usual definition of the
derivative. The following theorem demonstrates how the weak derivative may be
expressed in a way that is quite similar to the common definition of the derivative,
which also gives a method for its efficient calculation.

Theorem 3. Let f (t) be an ordinary locally integrable or generalized function. Then,
its weak derivative f 0(t) exists and may be expressed using the formula:

f 0ðtÞ ¼
Dt!0
w:lim

f ðt þ DtÞ2 f ðtÞ

Dt
ð37Þ

which differs from the ordinary definition of the derivative only in the usage of the
weak limit instead of the ordinary pointwise limit. When f(t) is a distribution, the
expression f (t þ Dt) should be interpreted using the rule k f (t þ Dt), f(t)l ¼ k f (t),
f(t 2 Dt)l, which is true for the ordinary functions.

The proof of the Theorem 3 is given in the Appendix at the end of the paper.
Although the proof is easy and straightforward, it is not possible to see this theorem
and formula (37) in the common literature. The probable reason for this is the common
belief that equation (37) just relates one indirect concept with another indirect concept,
so equation (37) is not any more useful than the definition (35). However, this paper
shows that the weak limit may be effectively calculated, so the formula (37) is in fact
quite useful. Moreover, it looks much more common and much more understandable
for any non-expert in functional analysis than the indirect definition (35).

The second example is even more striking than the previous one. Nearly whole
analog signal theory is based on the concept of Fourier transform. However, the
classical definition of the Fourier transform based on the formula:

F{ f ðtÞ} ¼ FðvÞ ¼

Z 1

21

f ðtÞe2ivtdt ð38Þ

works only for functions which are absolutely integrable on (21, 1). Many
Fourier transform pairs cannot be deduced from equation (38). One such example is
given in the introductory section of the paper. In fact, it is not possible to rigorously
apply equation (38) even to derive very common Fourier Transform pair
F{sinc t} ¼ p[u(v þ 1) 2 u(v 2 1)] where sinc t ¼ (sin t)/t for t – 0 and sinc
0 ¼ 0. Namely, f (t) ¼ sinc t is not absolutely integrable on (21,1) so the integral in
equation (38) does not converge properly (it exists only as a Riemann improper
integral). Moreover, it is clear that equation (38) cannot be applicable in general using
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the usual notion of the Lebesgue integral (nor using the concept of the Riemann
improper integral). For example, well known Fourier transform pair F{1} ¼ 2p d(t)
cannot be deduced from equation (38), because it is not possible to get the generalized
function d(t) as a result of ordinary integration. Therefore, functional analysis introduces
various more general definitions of the Fourier transform that may be applied to more
general class of functions, even for generalized ones. Unfortunately, as the generality
of such definitions increases, they become more and more indirect and unconstructive
in nature. One of the most general definitions, which is applicable to all ordinary and
generalized functions under the assumptions that they are tempered, defines the Fourier
transformF{ f(t)} of f(t) as a purely symbolic object F(v), which acts as a functional that
assigns to each test functionf(v) the value k f(v),F{f(v)}l, whereF{f(v)} is defined in
usual way using equation (38). In other words:

F{ f ðtÞ};fðvÞh i ¼ FðvÞ;fðvÞh i ¼ f ðtÞ;F{fðvÞ}h i ð39Þ

Particularly, according to equation (22), if there exists an ordinary locally integrable
function F(v) such that: Z 1

21

FðvÞfðvÞdv ¼ f ðtÞ;F{fðvÞ}h i ð40Þ

then F(v) is the Fourier transform of f(t).
It is possible to prove that such definition of the Fourier transform is sensible

whenever f(t) is tempered, and that it coincides with equation (38) whenever
equation (38) is applicable. However, such definition is extremely indirect due to strong
dependence of the operator approach, and it is almost impossible to apply this
definition for actual calculation of the Fourier transform, i.e. to express the Fourier
transform of some function using other common functions (ordinary or generalized),
except in very simple cases. In addition, this definition is quite different from the
common definition of the Fourier transform used in analog signal theory. That is why
the following theorem is useful, which says that the common definition of the Fourier
transform is applicable to much greater class of functions, under somewhat different
interpretation of the integral in equation (38) that uses weak limits.

Theorem 4. Let f(t) be an ordinary function that is locally integrable and tempered.
Then, its Fourier transform exists and may be expressed using formula:

F{ f ðtÞ} ¼ FðvÞ ¼
k!1
w:lim

Z k

2k

f ðtÞe2ivtdt ð41Þ

The limit in this formula is, in a sense, the weak Cauchy principal value. The similar
formula is also valid for the inverse Fourier transform. It is even possible to generalize
these formulae for some classes of generalized functions too, but such generalizations
require the generalization of the concept of the integral. Such generalizations are out of
scope of this paper. The theorem is proven in the Appendix at the end of the paper.

Note that this theorem explains easily why equation (1) is valid and why
F{1} ¼ 2p d(t).

5. Conclusion
This paper illustrates the concept of weak convergence, and the simple method that
allows the calculation of the weak limits. The paper introduces these concepts in
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a natural way, which is not hard to follow even without deep knowledge of advanced
mathematics. The presented concept is simple enough that it may be inserted in
advanced courses of analog signal theory. Such insertion might considerably increase
rigorousness of the whole signal theory as presented in engineer books.

Theorem 2 also opens some potential possibilities for implementation of calculus
with generalized functions in software packages that can deal with symbolic calculus,
like Wolfram Mathematica. Some research in this direction is already done by the
authors, which might eventually lead to general way of representing generalized
functions in software packages. Such research is out of scope of this paper.

The obvious advantage of the formula presented by Theorem 2 is its clearness and
efficiency for weakly convergent sequences that arise in the signal theory. One of its main
disadvantages is the fact that integration of the sequence in considerationmay sometimes
produce very complicated integrals, which cannot be expressed in closed form using
functions with known properties. In such cases, it may be very hard to apply the formula.
This problem is especially emphasized if the formulamust be applied iteratively before the
result is obtained.Anotherproblem is the fact thatweusuallydonot havea cluehowmany
times the formula needs to be applied beforewe get ordinary limit instead ofweak one. It is
not hard to prove that this goalmust be achieved in a finite number of steps if the sequence
in considerationweakly converges to an ordinary function or generalized function of finite
order. However, it seems that it is very hard to anticipate the necessary number of steps
in advance (it depends of the order of the result, which is not known in advance).
Fortunately, this number is typically very small for sequences that appear in the signal
theory.

As far as the applications are concerned, it has already been shownhow the concept of
weak limit justifies formal differentiation and Fourier transform, but that is not the only
application that comes in mind when dealing with weak limits. We already concluded
that the formula proposed is crucial in weak limit calculation, which arises even
more often than one may assume – but it is too often dealt with in manner of ordinary
limits.
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Appendix. Proofs of stated theorems
Proof of Theorem 2. Roughly speaking, Theorem 2 says that in order to calculate a weak limit
of a sequence, we can calculate the weak derivative of the weak limit of an integrated sequence.
To prove the theorem, we need to recall some auxiliary but quite advanced results from
functional analysis, especially from the theory of convolutions of generalized functions
(Vladimirov, 1979; Rudin, 1973; Schwartz, 1965). First, we recall that the mapping f(t) ! f(t)*h(t)
is continuous mapping from the space of generalized functions D *(R) into itself in respect to
weak limit whenever h(t) has the compact support (i.e. whenever it is time limited). This means
that under the stated conditions, the convolution fl(t)*h(t) converges weakly to f(t)*h(t) whenever
fl(t) converges weakly to f(t) (Vladimirov, 1979; Rudin, 1973). Assume now that weak limit of
fl(t) when l ! l0 exists and that it is equal to f(t). Since the function u(t þ Dt) 2 u(t 2 Dt) has
compact support, we can write:

l!l0
w:lim

Z tþDt

t2Dt

f lðjÞdj¼
l!l0
w:lim½f lðtÞ*½uðtþDtÞ2uðt2DtÞ��

¼
l!l0
w:limf lðtÞ

� �
*½uðtþDtÞ2uðt2DtÞ�¼ f ðtÞ*½uðtþDtÞ2uðt2DtÞ�

ðA1Þ

Note that the convolution in above formula is well defined, because u(t þ Dt)2 u(t 2 Dt) has the
compact support. Now, we need to recall that the mapping g(t) ! g(t)*h(t) is continuous mapping
with respect to weak limit even when h(t) is not time limited if we restrict the domain of this
mapping to the space of functions g(t) whose supports lay inside one fixed interval (2 tmax, tmax)
which does not depend on the particular function g(t) (Vladimirov, 1979). This is true even if
h(t) is generalized function (i.e. a distribution). The family of functions gDt(t) ¼ [u(t þ Dt) 2
u(t 2 Dt)]/(2 Dt) parameterized in Dt where Dt [ (0, tmax) satisfy this condition. Then, if we
recall that d(t) is a weak derivative of u(t), and that d(t) is the identity element for the convolution
(Vladimirov, 1979; Reed and Simon, 1980; Rudin, 1973; Schwartz, 1965), we can write:

Dt!0þ
w:lim

1

2Dt l!l0
w:lim

Z tþDt

t2Dt

f lðjÞdj

� �
¼

Dt!0þ
w:lim

1

2Dt
f ðtÞ*½uðtþDtÞ2uðt2DtÞ�

� �

¼
Dt!0þ
w:lim

uðtþDtÞ2uðt2DtÞ

2Dt
*f ðtÞ

� �

¼
Dt!0þ
w:lim

uðtþDtÞ2uðt2DtÞ

2Dt

� �
*f ðtÞ¼ dðtÞ*f ðtÞ¼ f ðtÞ

ðA2Þ

Therefore, assuming that the left side of equation (23) exists, we prove that the right side of
equation (23) exists too, and that they are equal. The proof of auxiliary facts used is far from
trivial, and may be found in Vladimirov (1979).
Now, we need to prove that the existence of the right side of equation (23) implies the existence

of the left side of equation (23). In other words, we need to prove that if the right side of
equation (23) exists, then fl(t) is weakly convergent when l ! l0. We will introduce the family
wl, Dt(t) of ordinary or generalized functions parameterized in both l and Dt as:

wl;DtðtÞ ¼
1

2Dt

Z tþDt

t2Dt

f lðjÞdj ¼
1

2Dt
f lðtÞ*½uðt þ DtÞ2 uðt 2 DtÞ� ðA3Þ

Under the assumption that the right side of equation (23) exists, wl, Dt(t) obviously must
converge weakly when l ! l0 at least for values of Dtwhich belong to some right neighborhood
of zero, i.e. which belong to some interval (0, t). Applying the Fourier transform to equation (A3)
and using the well-known Convolution Theorem, we get:
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Wl;DtðvÞ ¼ F{wl;DtðtÞ} ¼ F 1

2Dt
f lðtÞ*½uðt þ DtÞ2 uðt2 DtÞ�

� �

¼
1

2Dt
F{f lðtÞ} ·F{uðt þ DtÞ2 uðt 2 DtÞ} ¼ FlðvÞsincvDt

ðA4Þ

where Wl, Dt(v) and Fl(v) are the Fourier transforms of wl, Dt(t) and f l(t), respectively. As both
the Fourier transform and the inverse Fourier transform are continuous mappings, a family of
tempered distributions is weakly convergent if and only if the family of their Fourier transforms
is weakly convergent. Particularly, if wl, Dt(t) is weakly convergent for some value of Dt when
l ! l0, the same is true for Wl, Dt(v). Let see which conclusions we can derive about the
behavior of Fl(v) under such assumption. We will first prove that for a given Wl, Dt(v), there
always exist infinitely many distributions Fl(v) that satisfy equation (A4) in the distributional
sense. Following the lines of a proof about the distributional solutions of equations like (t 2 t0)
f(t) ¼ g(t) given in Vladimirov (1979), we will show that one such distribution is F*l;DtðvÞ
defined with the rule:

F*l;DtðvÞ;fðvÞ
D E

¼ Wl;DtðvÞ;
1

sincvDt

"
fðvÞ2

Xþ1

k ¼ 21

k – 0

f
kp

Dt

� �
h v2

kp

Dt

� �#* +
ðA5Þ

where h(v) is an arbitrary but fixed test function equal to 1 in some neighborhood of v ¼ 0.
The definition (A5) is meaningful, because if f(v) is a test function, it is easy to show that the
function:

cðvÞ ¼
1

sincvDt

"
fðvÞ2

Xþ1

k ¼ 21

k – 0

f
kp

Dt

� �
h v2

kp

Dt

� �#
ðA6Þ

is also a test function. Namely, although it seems that c(v) is singular whenever sinc v
Dt ¼ 0, all such singularities are removable ones. Furthermore, as the product of a distribution
f(v) with a smooth function s(v) is defined using the rule kf(v) s(v), f(v)l ¼ kf(v), f(v) s(v)l,
we have:

F*l;DtðvÞsincvDt;fðvÞ
D E

¼ F*l;Dt
ðvÞ;fðvÞsincvDt

D E
¼ Wl;DtðvÞ;

1

sincvDt

h
fðvÞsincvDt

�

2
Xþ1

k¼21

k–0

f
kp

Dt

� �
h v2

kp

Dt

� �
sinckp

+#
¼ Wl;DtðvÞ;fðvÞ
	 


ðA7Þ

Therefore, Fl(v) ¼ F*l;DtðvÞ really satisfies equation (A4).
Suppose now that there is another solution Fl(v) different from F*l;DtðvÞ that also

satisfies equation (A4). Then, the difference FlðvÞ2 F*l;DtðvÞ must satisfy the equation:

½FlðvÞ2 F*l;DtðvÞ�sincvDt ¼ 0 ðA8Þ
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From equation (A6) we have:

fðvÞ ¼ cðvÞsincvDt þ
Xþ1

k ¼ 21

k – 0

f
kp

Dt

� �
h v2

kp

Dt

� �
ðA9Þ

Therefore:

FlðvÞ2F*l;DtðvÞ;fðvÞ
D E

¼ FlðvÞ2F*l;DtðvÞ;cðvÞsincvDtþ
Xþ1

k¼21

k– 0

f
kp

Dt

� �
h v2

kp

Dt

� �* +

¼ FlðvÞ2 F*l;DtðvÞ;cðvÞsincvDt
D E

þ FlðvÞ2 F*l;DtðvÞ;
Xþ1

k ¼ 21

k – 0

f
kp

Dt

� �
h v2

kp

Dt

� �* +

¼ ½FlðvÞ2 F*l;DtðvÞ�sincvDt;cðvÞ
D E

þ
Xþ1

k ¼ 21

k – 0

f
kp

Dt

� �

� FlðvÞ2 F*l;DtðvÞ;h v2
kp

Dt

� �� �

¼
Xþ1

k¼21

k– 0

f
kp

Dt

� �
ckðl;DtÞ¼

Xþ1

k¼21

k– 0

ckðl;DtÞ d v2
kp

Dt

� �
;fðvÞ

� �

¼
Xþ1

k¼21

k– 0

ckðl;DtÞd v2
kp

Dt

� �
;fðvÞ

* +

ðA10Þ

Here we introduced notation:

ckðl;DtÞ ¼ FlðvÞ2 F*l;DtðvÞ;h v2
kp

Dt

� �� �
ðA11Þ

The values ck (l, Dt) are constants (which may depend on l and Dt), because h(v) is a fixed
function. From equation (A10) we can conclude that:
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FlðvÞ2 F*l;DtðvÞ ¼
Xþ1

k ¼ 21

k – 0

ckðl;DtÞd v2
kp

Dt

� �
ðA12Þ

Therefore, any eventual solution of equation (A4) for Fl(v) when Wl, Dt(v) is given must have
the form:

FlðvÞ ¼ F*l;DtðvÞ þ
Xþ1

k ¼ 21

k – 0

ckðl;DtÞd v2
kp

Dt

� �
ðA13Þ

where F*l;DtðvÞ is defined by equation (A5). Moreover, the straightforward calculation shows that
equation (A13) satisfies equation (A4) for arbitrary values of ck (l, Dt). This means that equation
(A13) is the general solution of equation (A4) for Fl(v) when Wl, Dt(v) is given. Note that in
general the right side of equation (A13) may depend of Dt. But if equation (A13) represents the
actual Fl(v), the Fourier transform of fl(t), Dt must be canceled somehow inside the right side of
equation (A13), as the actual Fl(v) does not depend of Dt.

We saw earlier that Wl, Dt(v) converges weakly when l ! l0 for Dt [ (0, t). It is easy to see

that same is true for F*l;DtðvÞ. Indeed, the weak convergence of Wl, Dt(v) when l ! l0 for fixed
Dt means that the sequence of numbers kWl, Dt(v), c(v)l converges when l ! l0 for each

test function c(v). But kF*l;DtðvÞ;wðvÞl is equal to kWl, Dt(v), c(v)l where c(v) is given by
equation (A6). This means that the sequence of numbers kF*l;DtðvÞ;wðvÞl converges when l ! l0
for each test function w(v). In other words, F*l;DtðvÞ converges weakly when l ! l0.

Note that although F*l;DtðvÞ for fixed Dt [ (0, t) converges weakly when l ! l0, the
right side of equation (A13) in general may be weakly divergent. This will be the case whenever
some of values ck (l, Dt) behave wildly when l ! l0. Now, we will show that this is not possible
if equation (A13) really represents the actual Fl(v). The key point is the independence of the
right side of equation (A14) on Dt. Indeed, for any two values Dt ¼ Dt0 and Dt ¼ Dt00 from (0, t)
the right sides of equation (A13) must be equal. Therefore, we have:

Xþ1

k¼21

k– 0

ckðl;Dt
00Þd v2

kp

Dt00

� �
2

Xþ1

k¼21

k– 0

ckðl;Dt
0Þd v2

kp

Dt0

� �
¼F*l;Dt0 ðvÞ2F*l;Dt00 ðvÞ

ðA14Þ

As the right side of equation (A14) is weakly convergent when l ! l0, the same must be true for
the left side. This is possible only if the both sums at the left side of equation (A13) are either
simultaneously weakly convergent or weakly divergent when l ! l0. However, as the both
sums are in fact the impulse trains, the latter scenario is possible only if there is a cancellation of
some impulses in the first sum with some impulses in the second sum. Such cancellation requires
that Dt 0 and Dt 00 have the greatest common divisor. Although such cancellation is possible for
some particular values of Dt 0 and Dt 00, it is not possible for arbitrary values of Dt 0 and Dt 00. But
the left side of equation (A14) must be weakly convergent when l ! l0 for arbitrary values of
Dt0 and Dt00. Therefore, both sums in equation (A14) must be weakly convergent when l ! l0.
In other words, the sum in equation (A13) must be weakly convergent when l ! l0 for arbitrary
value Dt from (0, t). The consequence is that Fl(v) also converges weakly when l ! l0, because
we saw that both components of equation (A13) are weakly convergent. As the Inverse Fourier
Transform is a continuous mapping, the same is true for fl(t), so the weak limit of fl(t) when
l ! l0 exists. The proof is now completed. A
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Proof of Theorem 3. It is a well-known fact that the weak derivative of an ordinary locally
integrable function or a generalized function always exists (Vladimirov, 1979). As f(t) may be
expressed as a linear and continuous functional using equation (22) (if it is an ordinary locally
integrable function), or it is already a linear and continuous functional (if it is a generalized
function), it is possible to write the following chain of equalities:

Dt!0
lim

f ðt þ DtÞ2 f ðtÞ

Dt
;fðtÞ

� �
¼

Dt!0
lim f ðt þ DtÞ2 f ðtÞ;

fðtÞ

Dt

� �

¼
Dt!0
lim f ðt þ DtÞ;

fðtÞ

Dt

� �
2

Dt!0
lim f ðtÞ;

fðtÞ

Dt

� �

¼
Dt!0
lim f ðtÞ;

fðt 2 DtÞ

Dt

� �
2

Dt!0
lim f ðtÞ;

fðtÞ

Dt

� �

¼
Dt!0
lim f ðtÞ;

fðt 2 DtÞ2 fðtÞ

Dt

� �

¼ f ðtÞ;
Dt!0
lim

fðt2 DtÞ2 fðtÞ

Dt

� �
¼ f ðtÞ;2f0ðtÞ
	 


¼ 2 f ðtÞ;fðtÞh i ¼ f 0ðtÞ;fðtÞ
	 


ðA15Þ

This means that equation (37) holds, so the proof is completed. A
Proof of Theorem 4. We recall some facts about appropriate functions spaces known from

functional analysis (Vladimirov, 1979; Reed and Simon, 1980; Rudin, 1973). At first, the integral
in equation (41) is the Fourier transform of the function f(t) u(k 2 jtj). Indeed, under the stated
conditions, f(t) u(k 2 jtj) vanishes out of the interval (2k, k), so it is absolutely integrable.
Therefore, equation (38) is applicable, and the integral in equation (38) reduces to the form given
in equation (41). Now, the theorem is simply a consequence of the facts that the Fourier transform
is a continuous mapping from the space of tempered distributions S *(R) to itself, and that f(t)
u(k 2 jtj) weakly converges to f(t) when k ! 1 (even in the sense of the topology of S *(R)).
Therefore, we have:

F{f ðtÞ} ¼ F
k!1
w:lim f ðtÞuðk2 jtjÞ

� �
¼

k!1
w:limF{f ðtÞuðk2 jtjÞ}

¼
k!1
w:lim

Z k

2k

f ðtÞe2ivtdt

ðA16Þ

This proves the theorem. The proof of auxiliary facts used may be found in Vladimirov (1979),
Reed and Simon (1980) and Rudin (1973). A
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